Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
نویسندگان
چکیده
Using synthetic analogs of an alpha-helical winter flounder antifreeze polypeptide (AFP) we investigated some important molecular details of the mechanism of action of this AFP. Of the seven peptides synthesized, all but one were amino-terminal deletions of the native AFP. Three of the seven synthetic analogs possessed the same antifreeze activity as the native polypeptide; the other analogs were devoid of antifreeze activity. The growth rates along the a and c axes of ice in solutions of varying concentrations of the three active AFP analogs were examined. The a axis growth rates of ice were inversely proportional to the concentration of the active peptides. The c-axis growth rates of ice were also dependent on peptide concentration. The active peptides enhanced c-axis growth at lower concentrations, while at higher concentrations they inhibited c axis growth. The ability of the peptides to develop antifreeze activity and to alter the a and c axis growth rates of ice depended on the presence of appropriately positioned amino acid residues with hydrogen bonding side chains. From these observations we propose that at low concentrations the AFP, through dipolar interactions and hydrogen bonding, interact with the prism faces of ice retarding a axis growth. At these concentrations, the electrical field of the AFP helix-dipole, like an externally applied field (Bartlett, J.T., van der Heuval, A.P., and Mason, B.J. (1963) Z. Angew. Math. Phys. 14, 599-610), can enhance ice c axis growth. At higher concentrations, the AFP interact with all ice crystal planes and retard both a and c axis growth.
منابع مشابه
Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating
The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopi...
متن کاملStructure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids.
An alanine-rich, alpha-helical antifreeze polypeptide (AFP) from the winter flounder and seven analogs with variations in the arrangement of neutral, polar amino acids were synthesized. Circular dichroism studies determined that all of the peptides, except for one containing a proline residue, were essentially 100% alpha-helical. Freezing point depression data, analyzed by three methods, showed...
متن کاملConcentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive
A supersoluble 40-residue type I antifreeze protein (AFP) was discovered in a righteye flounder, the barfin plaice (bp). Unlike all other AFPs characterized to date, bpAFP transitions from moderately-active to hyperactive with increasing concentration. At sub-mM concentrations, bpAFP bound to pyramidal planes of ice to shape it into a bi-pyramidal hexagonal trapezohedron, similarly to the other...
متن کاملDNA sequence coding for an antifreeze protein precursor from winter flounder.
A cDNA made to antifreeze protein mRNA of the winter flounder was cloned in the plasmid pBR322 and its sequence was determined by the method of Maxam and Gilbert. Its sequence codes for a precursor protein that is 82 amino acids in length. This precursor has both a signal polypeptide and a prosequence before the mature protein of 38 amino acid residues. The mature protein matches in composition...
متن کاملEffect of a mutation on the structure and dynamics of an alpha-helical antifreeze protein in water and ice.
One strategy of psychrophilic organisms to survive subzero temperature is to produce antifreeze protein (AFPs), which inhibit the growth of macromolecular ice. To better understand the binding mechanism, the structure and dynamics of several AFPs have been studied by nuclear magnetic resonance (NMR) and X-ray crystallography. The results have shown that different organisms can use diverse struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 19 شماره
صفحات -
تاریخ انتشار 1989